SRAGL-AWCL: A two-step multi-view clustering via sparse representation and adaptive weighted cooperative learning
نویسندگان
چکیده
Sparse representation and cooperative learning are two representative technologies in the field of multi-view spectral clustering. The former can effectively extract features multiple views by removal redundant information contained each view. latter incorporate diversity However, traditional sparse algorithms inadequate preserving internal geometric data manifold regularization. In fact, general approaches rarely consider similarities between graph structures individual views. Moreover, to achieve optimal global feature learning, we present a novel two-step clustering strategy, which combines proposed adaptive with weighted learning. first step, matrix factorization regularization strengthen discrimination samples Specifically, synchronization optimization method introducing better retain its complete structure This ensures correlation through usage similarity matrix. second is performed on view get optimized order ensure that associated various features, also Experiment results several datasets single-view show significantly outperformed state-of-the-art algorithms.
منابع مشابه
Multi-view clustering via pairwise sparse subspace representation
Multi-view clustering, which aims to cluster datasets with multiple sources of information, has a wide range of applications in the communities of data mining and pattern recognition. Generally, it makes use of the complementary information embedded in multiple views to improve clustering performance. Recent methods usually find a low-dimensional embedding of multi-view data, but often ignore s...
متن کاملMulti-view Sparse Co-clustering via Proximal Alternating Linearized Minimization
When multiple views of data are available for a set of subjects, co-clustering aims to identify subject clusters that agree across the different views. We explore the problem of co-clustering when the underlying clusters exist in different subspaces of each view. We propose a proximal alternating linearized minimization algorithm that simultaneously decomposes multiple data matrices into sparse...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملHyperspectral Target Detection via Adaptive Joint Sparse Representation and Multi-Task Learning with Locality Information
Target detection from hyperspectral images is an important problem but encounters a critical challenge of simultaneously reducing spectral redundancy and preserving the discriminative information. Recently, the joint sparse representation and multi-task learning (JSR-MTL) approach was proposed to address the challenge. However, it does not fully explore the prior class label information of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2021
ISSN: ['1873-5142', '0031-3203']
DOI: https://doi.org/10.1016/j.patcog.2021.107987